Welcome to Journal of Beijing Institute of Technology
SUN Bai-gang, XIANG Qing-hua, LIU Fu-shui. Thermal efficiency characteristics of hydrogen internal combustion engine[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2014, 23(3): 332-338.
Citation: SUN Bai-gang, XIANG Qing-hua, LIU Fu-shui. Thermal efficiency characteristics of hydrogen internal combustion engine[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2014, 23(3): 332-338.

Thermal efficiency characteristics of hydrogen internal combustion engine

  • To study the economic advantages of hydrogen internal combustion engine, an experimental study was carried out using a 2.0.L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equivalence ratio Φ, speed, and ignition advance angle on heat efficiency were determined. Test results showed that indicated thermal efficiency (ITE) firstly increased with fuel-air equivalence ratio, achieved the maximum value of 40.4% (Φ=0.3), and then decreased when Φ was more than 0.3. ITE increased as speed rises. Mechanical efficiency increased as fuel-air equivalence ratio increased, whereas mechanical efficiency decreased as speed increased, with maximum mechanical efficiency reaching 90%. Brake thermal efficiency (BTE) was influenced by ITE and mechanical efficiency, at the maximum value of 35% (Φ=0.5, 2.000.r/min). The optimal ignition advance angle of each condition resulting in the maximum BTE was also studied. With increasing fuel-air equivalence ratio, the optimal ignition angle became closer to the top dead center (TDC). The test results and the conclusions exhibited a guiding role on hydrogen internal combustion engine optimization.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map